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Abstract

The Copula function is used to construct multivariate distributions to the advantage of

separating the effects of dependence from the effects of marginal distributions of correlated

random variables. To analyze the change of bivariate structure, the paper proposed the

bivariate analysis method based on smoothing-window-based dependence structure entropy by

combining smoothing windows with dependence structure entropy. The measurement data of

monthly precipitation time series and monthly runoff time series at Huaxian in Weihe river

basin from 1951 to 2010 was taken as an example, according to which the dependence

structure entropy in different smoothing windows was computed. The result shows that the

year of 1972 witnesses the mutation of dependence structure of precipitation and runoff at

Huaxian, and that precipitation and runoff obeys the bivariate T-Copula function distribution

during the period 1951-1972, and the bivariate Gumbel-Copula function distribution during the

period 1973-2010. With many advantages, the Copula-function-based bivariate simulation is

conducive to further understanding of the dependence between precipitation and runoff, and

provides a new perspective of analyzing the relationships between precipitation and runoff.
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1. Introduction

There are three frequently-used methods for multivariate analysis, namely normal

distribution, jointly specific marginal distribution, and non-parameter approach. Despite the

effectiveness in certain practical analysis, they still have some problems during research. For

instance, in terms of normal distribution, normal conversion is required for massive data of

non-normal distribution, during which data lose is inclined to happen; while jointly specified

marginal distribution is largely effective if and only if there is one category of marginal

distribution for targeted variables, which is difficult to meet in practical cases; despite a

favorable reflection of measurement data, the multivariate joint distribution constructed by

non-parameter approach cannot reveal the category of corresponding marginal distributions. In

addition, the above methods fail to describe variables of negative correlation. To address these

issues, researchers at home and abroad introduce into the multivariate domain the theory and

method of copula function with flexible, varied forms and simple solution [1, 2]. With copula

function, multivariate joint distribution can be constructed through marginal distribution and

dependence [3].

The Copula function can reflect dependence structure of random variables by separating

the effects of dependence from the effects of marginal distributions of correlated random

variables. Specifically, joint distribution can be divided into dependence structure and marginal

distribution for independent treatment, where the former one is described by copula function

[4]. The advantage of the application of copula function is that marginal distributions of

arbitrary types can be constructed into joint distribution, and that no data distortion or data loss

occurs since the marginal distribution contains all univariate data [5]. By describing

dependence structure of variables, copula function has been widely applied to the fields of

hydrology, economic calculation, and data mining [6]. The paper first expounded the concepts

of copula function and entropy. Then, the idea of dependence structure entropy was proposed

by means of combining copula function with entropy. Next, the technology of smoothing

window was introduced to dependence structure, whose production was finally applied to

research into the dependence structure of precipitation and runoff, with the intention of

providing a new way for analysis of dependence between precipitation and runoff.
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2. Copula function

2.1 The theory of Copula

The theory of Copula can be traced back to Sklar’s theorem. In 1999, Nelsen gave a

precise definition of Copulas [7], whose fundamental thought was that a copula was a joint

distribution function which joined or coupled N random variables to their uniform one-

dimensional margins. The 2-dimensional random variables can be expressed as:

Let X and Y be random variables with marginal distribution functions F1(x) and F2(y)，

respectively, and joint distribution function ),(, yxF YX that corresponds to the density function

of )(),(),,( 21, yfxfyxf YX . Then there exists a copula C which satisfies

))(),((),( 21, yFxFCyxF YX 

(1)

))(),(( 21 yFxFC is a dependent distribution function, where C: [0,1]2→ [0,1]. Copulas can expand 

to n-dimensional (n＞2) joint distributions [8].

2.2 Commonly-used copula function

The commonly-used copula functions include Gauss-Copula, T-Copula and Archimedean

Copula [9].

The bivariate Gauss-Copula distribution function is
1 1 2 2

( ) ( )

22

1 2
( , ; ) exp

2 (1 )2 1

u v
G a s st t

C u v dsd t



 

  

 

  
    
 

(2)

Whose density function is
1 2 1 2 1 1 1 2 1 2

22

1 ( ) ( ) 2 ( ) ( ) ( ) ( )
( , , ) exp exp  

2(1 ) 21






               
         

Ga u v u vu u v
c u v

(3)

Where  denotes the linear dependence coefficient between variables, and
1 represents

the inverse of standard Gaussian distribution. The density function of bivariate Gauss-Copula

has symmetric tails with tail dependence parameter about zero. It means that the asymmetric

properties of tail dependence between random variables cannot be captured.

The bivariate T-Copula distribution function is
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Whose density function is
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Where  denotes the linear dependence coefficient between variables, k is the degree of

freedom, and
1t represents the inverse of T-distribution. The bivariate T- Copula density

function has relatively heavy tails such that it is sensitive to changes of tail dependence

between random variables. Thus the density function can better capture the asymmetric

properties of tail dependence between random variables.

As families of Archimedean Copulas, Gumbel-Copula, Clayton-Copula and Frank-Copula

have a broad range of application, because they are suitable for variables with either positive

correlation or negative correlation. The corresponding three categories of distribution function

are
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There are no symmetric tails for the density function of bivariate Gumbel-Copula and for

that of bivariate Clayton-Copula, thus they are able to capture the asymmetric properties of tail

dependence between random variables. With a high upper tail and a less high lower tail, the

density function of Gumbel-Copula is sensitive to changes of the upper tail, and hence is

applicable to conditions with upper tail dependence and lower tail approximation

independence. As a contrast, the density function of the bivariate Clayton-Copula that is

characterized by a high lower tail and a less high upper tail is sensitive to changes of the lower

tail, and hence is applicable to conditions with lower tail dependence and upper tail

independence approximation. The measure of the tail dependence coefficient for the bivariate

Frank-Copula equals zero, which means that the distributed tail variables are approximated and

independent between each other, and that it fits the conditions with upper tail dependence and

lower tail independence approximation [10,11].

2.3 Parameter estimation of copula function

Maximum likelihood estimation is one of the most frequently-used approaches of

parameter estimation [12]. If considered generally, let the marginal distribution functions of

random variables X and Y be ),( 11 xF and ),( 22 yF , respectively. Then the corresponding

marginal density functions are respective ),( 11 xf and ),( 22 yf , where 1 and 2 are unknown

parameters for marginal distribution. Let copula distribution function be );,( vuC and its

density function be vu
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The maximum likelihood estimation of all parameters can be obtained by taking the

derivative of the above log-likelihood function.
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2.4 Evaluation on the Copula function

To assess the quality of the proposed model, the experience copula function (E-Copula,

for short) is introduced to the research [13]. Let ),,2,1)(,( niyx ii  be the sample of the

overall ),( YX , and the experience distribution functions for YX , be )(xFn and )( yGn ,

respectively. The E-Copula of the sample is defined as
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The Euclidean distance between the bivariate copula function and the E-Copula function

is defined as
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Euclidean distance reflects the situation that the bivariate copula function fits the original

data. The smaller the Euclidean distance is, the higher the model’s goodness-of-fit is.

3. Information entropy

3.1 Differential entropy

The differential entropy ( )H X [14] is defined as

dxxfxfXH XXX  )(log)()(

(16)

Where the base of the logarithm is one of the values among 2，e and 10.

3.2 Conditional entropy
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Let
)(, yxf YX be the conditional probability, and the definition of conditional entropy is

given by

dxdyyxfyxfYXH
YXYXYX   )(log),()( ,

(17)

3.3 Joint entropy

Joint entropy measures the uncertainty that a pair of random variables X and Y occurs

simultaneously, whose definition is
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And similarly for )()(),( XYHXHYXH XY .

4. Smoothing-window-based dependence structure entropy

4.1 Dependence structure entropy

Let )(1 xFu  , )(2 yFv  , and then ),())(),((),( 21, vuCyFxFCyxF YX  , where ),( vuc is the

dependence structure entropy.

The dependence structure entropy of random variables X and Y is defined as

 dudvvucvucVUHC ),(log),(),(

(19)
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Below is the deduction of the relationship among joint entropy, dependence structure

entropy, and differential entropy.
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It has trivially shown that the joint entropy can be decomposed into and equals the sum of

dependence structure entropy ),( VUHC as well as differential entropies )(XH and )(YH . If the

random variables X and Y are completely independent from each other, then the measure of

the dependence structure entropy equals zero, or 0),( VUHC . It indicates that the more

independence approximation X and Y has, the more ),( VUHC approximates zero; and that the

more closely the dependence between X and Y is, the larger the distance between ),( VUHC and

zero is. In this way, dependence structure entropy can be used to discuss changes of

dependence structures between X and Y.

4.2 Smoothing-window-based dependence structure entropy

When the dependence between a pair of random variables changes, their dependence

structure varies noticeably. The paper introduces the concept of smoothing window into

dependence structure entropy, and calls their combination as smoothing-window-based

dependence structure entropy.

There are mainly two parameters for smoothing windows, one is window length W, and

the other is smoothing step L. Below are the procedures to compute the smoothing-window-

based dependence structure entropy of two-time series.

1) Select W. It should be guaranteed that the Ws for the two-time series are the same;

2) Select L. Keep W unchanged. Move the window at the distance of L in order from the

first data in the time series, until all the data has been passed;

3) Compute the dependence structure entropy of both time series in their respective

windows, and obtain the corresponding smoothing-window-based dependence structure

entropy;

4) Draw out the sequence diagram of the dependence structure entropy. Identify

preliminarily the structure change of the two time series;

5) With Euclidean distance as the evaluation criteria, determine the optimal family of

copula functions before and after the change happens.
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5. Case study

5.1 Data source

The dependence structures of time series data for precipitation and runoff at Xianyang

hydrological station in the Weihe river basin were chosen for analysis in the paper. The Weihe

River is the largest tributary of the Yellow River. Influenced by human activities and climate

change, the precipitation and runoff volume in the basin witness a decreasing trend [10].

Changes perhaps have happened accordingly for the relationship of dependence structures

between precipitation and runoff, whose binary distribution changes as a result. Xianyang

hydrological station lies in the midstream and downstream reaches of the Weihe river basin,

and is greatly affected by human activities in the upstream area. The paper conducted analysis

of dependence structures of time series data for monthly precipitation and monthly runoff,

respectively, at Xianyang hydrological station in the Weihe river basin, from January 1951 to

December 2010. Both time series had a window length of 720. The data of runoff came from

hydrological information on Yellow River from National Hydrological Yearbooks, and the

meteorological data was derived from

http://www.cams.cma.gov.cn/cams_kxsy/qky_kxsy_index.htm.

5.2 The smoothing-window-based dependence structure entropy of Huaxian

During data analysis based on smoothing windows, the key to success is to find out

effective window length and smoothing steps. Changes of dependence structures between two

random variables cannot be observed in overlarge or undersized windows. To determine the

effective window length, one in practical operation usually selects first a window of a

relatively small (large) length, scales up (down) the length such that several window lengths in

proportion can be used for analysis, and conducts dependence structure analysis on these

windows. Interested in changes of the dependence structures of annual precipitation and annual

runoff, respectively, we determine the smoothing step L for analysis as 12, and the window

lengths as 12, 24, 60,120,240, respectively (Figure 1).
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Fig. 1. The dependence structure entropy between precipitation and runoff at Huaxian (Ws

(from top to bottom) are 12, 24, 60,120,240, respectively)

As can be seen from the above figure, when Ws are 12, 24, 60,120,240, respectively, there

are two phases for changes of dependence structures of time series for precipitation and runoff.

Specifically, the period from 1951 to 1972 sees a trend of slow increase first and then decrease;

the curve hits the bottom in the year of 1972 as a turning point, and then fluctuates slowly. The

changes of dependence structures of time series for precipitation and runoff in different

windows are consistent. What’s more, under the effect of human activities, the dependence

between time series for precipitation and that for runoff tends to drop gradually. [16, 17] show

that the year of 1972 marks the abrupt change of the relationship between precipitation and

runoff in the Weihe river basin.

Table 1 is the parameters of bivariate Copula function for precipitation and runoff during

the research period of 1951-2010.

Table 1. The parameters of Copula function

1751.1-1972.12 1973.1-2010.12

Gauss   0.8202 d 0.1641   0.6116 d 0.1531

T
  0.8202
k 4

d 0.1042
  0.6706
k 7

d 0.1652

Gumbel  =1.9283 d 0.1315  =1.7156 d 0.1153
Clayton  =1.7251 d 0.1129  =1.5931 d 0.1762
Frank  =5.7956 d 0.1273  =4.8158 d 0.1531
Optimal Copula T-Copula Gumbel -Copula

Under the criteria of Euclidean distance, T-Copula fits the observation data at the first

stage (1951-1971) best, while Gumbel–Copula has the optimal goodness-of-fit for the

observation data at the second stage (1972-2010). In other words, the family of bivariate

density function begins to change from T-Copula to Gumbel–Copula in 1972. In terms of the

dependence structure entropy and the optimal copula distribution, the dependence structure of
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precipitation and runoff mutates in 1972. Figure 2-7 show the optimal density function,

distribution function, and contour map at different stages.

Fig. 2. Bivariate T-copula density function of Huaxian in 1951~1972

Fig. 3. Bivariate T-copula distribution function of Huaxian in 1951~1972

Fig. 4. Contour map of Huaxian in 1951~1972

Fig. 5. Bivariate Gumbel-copula density function of Huaxian in 1973~2010
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Fig. 6. Bivariate Gumbel-copula distribution function of Huaxian in 1973~2010

Fig. 7. Contour map of Huaxian in 1973~2010

5.3 Discussion

The density function for precipitation and runoff during the period of 1951-1971 has

relatively heavy tails, which means that there is large mutual influence between precipitation

and runoff. The high upper tail and low lower tail shown in the density function diagram

indicates that the upper tail dependence overmatches lower tail dependence, namely that the

interaction between maximum values of precipitation and those of runoff surpasses the

interaction between minimum values of precipitation and those of runoff. The density function

for precipitation and runoff during the period of 1972-2010 has a high upper tail and an

approximating and independent lower tail. This means that there are mutual effects between

maximum values of precipitation and those of runoff, and that minimum values of precipitation

and those of runoff are basically independence from each other.

There may be two causes to the different distributions between precipitation and runoff at

Huaxian from 1951 to 2010: 1. Climate change. The precipitation amount in Weihe river basin

dropped remarkably in 1972 due to El Nino, leading to a great turn of the local precipitation; 2.

Human activities. There are large-scale development of reservoirs and irrigation engineering in

the Weihe river basin during the 1970-1980 period. For example, the main canal on the

uplands that ring Baoji Gorge was established in 1971, and the year of 1970 witnessed the

implementation of the Dongfanghong Chouwei Irrigation Project. As a result of the above

hydraulic engineering, the runoff production rate declined in the area, which further reduced
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the actual runoff in 1972. All in all, the climate change as a natural cause and the human

activities as a man-made reason together mutate the dependence structure of precipitation and

runoff at Huaxian in Weihe river basin in 1972.

6. Conclusion

By introducing the idea of smoothing-window-based dependence structure entropy to the

paper, the dependence structure of precipitation and runoff at Huaxian in the Weihe river basin

was analyzed. The result shows that the dependence structure of precipitation and runoff

mutates in 1972. The period from 1951 to 1972 sees a trend of slow increase first and then

decrease; while the period from 1972 to 2010 witnesses another tendency of slow increase first

and then decrease. In different smoothing windows with the fixed smoothing step of 12, the

dependence between precipitation and runoff at Huaxian is enlarged first, then shrinks, then

intensifies again, and finally declines. This phenomenon indicates that under the influence of

climate change and human activities, the dependence between precipitation and runoff is

weakened. As a crucial link of water circulation, precipitation and runoff in the Weihe river

watershed is affected by climate change (temperature, evaporation, for example) and human

activities (such as underlying surface change, and hydraulic engineering), and is characterized

by high intricacy, non-steadiness, and non-linearity. Research into the dependence structure of

precipitation and runoff is conducive to further understanding of the evolution law of time

series for precipitation and runoff. It is also of great significance to efficient water usage,

positive function and safe operation of hydraulic engineering, as well as social stability and

progression.

The concept of copula function and dependence structure entropy was brought into the

paper. Compared to existing multivariate modeling, copula function can divide the bivariate

joint distribution into dependence structure and marginal distribution for independent

processing, and is free from limitations of variate distribution families as well. Thus, there is

no data loss caused by the measure of assuming distribution types for this approach, and non-

normal, asymmetric distribution data can be captured according to tail dependence parameters.

In light of entropy, this simple, convenient, and noise-resistant nonlinear theory can be

combined with the copula theory in a way that calculating the change of dependence structure

of two random variables, so that this combination offsets the disadvantage of analysis by

conventional linear methods. The proposed smoothing-window-based dependence structure
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entropy in the paper help reveal the tendency of precipitation time series and runoff time series,

and also provides theoretical basis for planning and managing hydraulic engineering.
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